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Abstract: The effective medium approximation (EMA) model may cause a large deviation in 
the data analysis of spectroscopic ellipsometry (SE) for solid materials with randomly micro-
rough surfaces since it ignores the influence of the lateral irregularities of the rough surfaces 
on the electromagnetic scattering. In this work, a novel inversion framework is developed to 
extract optical constants from the SE parameters for solid materials with randomly micro-
rough surfaces. Our approach enables the integration of the Levenberg-Marquardt 
optimization algorithm and the first-principles calculations of electromagnetic scattering. In 
each iterative step, the electromagnetic interactions with rough surfaces are accurately 
obtained from first-principles calculations without using the EMA model for rough 
estimation, which significantly guarantees the precision and wide applicability of our method 
for actual surfaces without a perfectly Gaussian height distribution. Furthermore, a superior 
advantage of our approach is that its error can be feasibly evaluated from the instrumental 
errors of the surface morphology detectors and the SE. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

The optical constants of materials are essential data and closely connected with many fields, 
such as photocatalysis [1,2], the solar desalination of sea water [3,4], thermophotovolatic 
emitters [5,6], and thin film materials in photonics [7,8]. The spectroscopic ellipsometry (SE) 
technique is well known as a powerful tool for evaluating the optical constants of solid 
samples due to its fast, precise, and non-destructive capabilities [9–12]. Using SE 
measurements, one can directly obtain the amplitude ratio Ψ and the phase difference Δ 
between the p- and s-polarizations of reflection light. The measured values (Ψ, Δ) are called 
the ellipsometric parameters and they are defined by [13] 

tan exp( ) ,= p

s

r
i

r
ρ Ψ Δ = (1)

where ρ is the ellipsometric ratio, and rp and rs are the Fresnel reflection coefficients in the p- 
and s-polarizations, respectively. In the general data analysis of SE, by combining Eq. (1) and 
the Fresnel equations, the ellipsometry data can be transformed into the optical constants: 
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where n is the refractive index and k is the extinction coefficient of materials, and θ is the 
incident angle of light. It should be noted that the condition for using Eq. (2) is that sample 
surfaces have to be perfectly smooth, because the Fresnel equations describe only the 
reflection properties of such surfaces. Hence, samples with smooth surfaces are strongly 
recommended in the measurement of SE. However, any practical surface inevitably exhibits 
some roughness no matter how carefully it is polished. Although the referred surface 
roughness is usually much smaller than the wavelength of incident light in practical 
experiments, SE is capable of detecting the large deviation between ellipsometric responses 
from micro-rough and smooth surfaces since it is highly sensitive to surface structures [14–
16]. Actually, such a deviation will yield pseudo optical constants. To obtain optical constants 
of samples that are more accurate, one may take into account the influence of rough surfaces 
on the electromagnetic scattering. A commonly considered method for this involves building 
the effective medium approximation (EMA) model to estimate the optical response of rough 
surfaces [13,17–19]. To use the EMA model, a surface’s rough layer is replaced by a 
homogeneous and flat layer with an effective thickness and an effective dielectric function. 
As is usually done in an experimental data analysis, the thickness of the EMA layer is 
assumed to be equal to the root mean square height, which can be estimated from the surface 
morphology detectors, such as atomic force microscopy (AFM) [20]. In addition, the effective 
dielectric function is usually solved using Bruggeman’s EMA theory. 

Demonstrably, the EMA model cannot build the accurate mappings between the optical 
constants and the SE parameters, because it considers only the height irregularities and it 
neglects the large effect of the lateral characteristic dimensions on the electromagnetic 
scattering from rough surfaces. More details regarding the limitations of the EMA model can 
be found in our previous work [15]. Accordingly, the EMA model cannot easily satisfy the 
demands of high-precision measurements for optical constants. Conversely, the SE 
parameters can be precisely correlated with the optical constants by the first-principles 
calculations of Maxwell’s equations [21–23]. In the past, the first-principles calculations of 
the electromagnetic scattering from rough surfaces were challengeable due to the limitations 
of computer memory and the consumption of a large amount of calculation time. With the 
remarkable progress of computers today, first-principles calculations of Maxwell’s equations 
have been able to become crucial tools in the data analysis of SE for rough surfaces [24]. 

By combining the first-principles calculations of electromagnetic scattering and the 
Levenberg-Marquardt optimization algorithm, we present a novel inversion method to obtain 
the optical constants of solid materials with micro-rough surfaces from SE measurements. 
The error analysis of the proposed method is also introduced. Our approach uses the first-
principles calculations of electromagnetic scattering to generate the mappings between the SE 
parameters and optical constants for micro-rough surfaces with various morphologies. In fact, 
there are many distribution forms of rough surfaces including random and periodic ones. 
Here, we adopted silicon samples with different Gaussian distributed randomly micro-rough 
surfaces to perform the theoretical verification of our method, because the Gaussian 
distribution is the most common and typical distribution [25]. Real sample surfaces may have 
no perfectly Gaussian distributions. Even so, due to the applicability of the first-principles 
calculations of electromagnetic scattering for arbitrary surface profiles, our method is not 
restricted to Gaussian distributed randomly micro-rough surfaces. In particular, gratings are 
generalized rough surfaces with periodic structures. In recent years, extracting the critical 
dimensions of gratings with SE has drawn extensive attention from researchers, who have 
accumulated abundant SE experimental data [26–29]. In the last part of this work, we 
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demonstrate the experimental validation of our method with the available SE experimental 
data for rectangular gratings and a real SiO2 randomly rough surface. 

2. Theoretical background and methodology 

2.1 Gaussian distributed randomly micro-rough surface model 

Generally, randomly micro-rough surfaces are characterized by the root mean square height σ 
and the correlation length ζ, which represent the vertical and lateral characteristic lengths of 
the randomly micro-rough surfaces, respectively. The correlation length ζ is defined by a lag 
length which drops from the peak value of the autocovariance function by a factor of e−1 [25]. 
As to Gaussian distributed randomly rough surfaces, the corresponding autocovariance 
function has the equivalent form [30]: 

 ( ) ( ) ( )2 2 2expH p H p q qσ ζ + = − 
  

 (3) 

where ( )H p


 represents the height at position p


, q


 is a spatial vector, and q  denotes its 

magnitude. 

2.2 Effective medium approximation 

Assuming that the ambient surrounding of the sample is air or vacuum, the Bruggeman 
formula takes the form [13]: 

 (1 ) 0
2 2

n eff v eff

n eff v eff

ε ε ε ε
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ε ε ε ε
− −

+ − =
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where γ and εn represent the volume fraction and the dielectric function of the measured 
sample, respectively, εv is the dielectric function of void spaces, and εeff is the effective 
dielectric function of the rough layer. In most cases, γ is usually regarded as a constant 50% 
to calculate effective dielectric functions of the EMA layer [31]. 

2.3 Direct problem 

Consider a direct problem to solve the SE parameters of micro-rough surfaces. The SE 
parameter Ψ or Δ can be regarded as a function of several variables, including θ, λ, n, k, and 
the morphological parameters of surfaces, where λ denotes the wavelength of the incident 
light. For Gaussian distributed randomly micro-rough surfaces, the morphological parameters 
are σ and ζ. For rectangular gratings, the morphological parameters become the depth h, the 
line width b, and the period Λ. When the quantities of those variables are known, Ψ and Δ can 
be obtained from the first-principles calculation methods of electromagnetic scattering, such 
as the rigorous coupled-wave analysis (RCWA) [32,33], the finite-element method (FEM) 
[34], and the finite-difference time-domain (FDTD) method [23,35]. In this work, the FDTD 
method was employed to simulate the interaction of the electromagnetic wave with Gaussian 
distributed randomly micro-rough surfaces, while RCWA was used to calculate the 
electromagnetic response of rectangular gratings. Previously, Lehner et al. [35] applied FDTD 
to calculate the polarization optical response of randomly rough surfaces, and it is indicated 
that the electromagnetic response of a sample surface with arbitrary surface structure can be 
simulated with FDTD. In addition, in our recent work, we performed an experimental 
verification of the FDTD method on a two-dimensional SiO2 randomly rough surface, and the 
simulated results agreed well with the experimental results [23]. The general procedures for 
obtaining the SE parameters with FDTD are as follows. First, FDTD is used to calculate the 
electric and magnetic fields within a finite space around the sample. Then the near-field to 
far-field transformation theory is applied to obtain the scattered fields in the region that is far 
away from the sample. Finally, the SE parameters are calculated from Eq. (1) based on the 
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scattered far field. The more detailed algorithms for FDTD and RCWA can be found in some 
references [36–39]. 

2.4 Inverse problem 

For the inverse problem, the optical constants n and k are regarded as unknown, but the other 
quantities Ψ, Δ, θ, λ, and the morphological parameters of the surfaces are known. Among 
these quantities, the SE parameters are available from the SE experiment and the 
characteristic parameters of the surface morphology are estimated from the surface 
morphology detectors, such as AFM. When λ and the morphological parameters are 
unchanged, the SE parameters Ψ and Δ with respect to n and k are defined as follows: 

 ( , , ), ( , , ).n k n kθ θΨ = Ψ Δ = Δ  (5) 

In the inverse analysis, the optical constants are estimated by utilizing the measured SE 
parameters. To avoid the non-uniqueness of inversion, multiple sets of SE parameters may be 
adopted at different incident angles to build over-determined equations. Thus, the inverse 
problem of estimating the optical constants can be formulated as an optimization problem for 
the minimization of the objective function: 
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where Ψ* and Δ* represent the measured data, Ψ and Δ are the estimated SE parameters 
obtained from the solution of the direct problem based on the estimated optical constants (n, 
k), and m denotes the number of incident angles for monochromatic light. 

2.5. Iterative method of minimization 

Based on the Levenberg-Marquardt optimization algorithm, the following iterations are built 
to determine the unknown optical constants: 
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(7) 

where the symbol ‘[]’ represents a matrix, the subscript j denotes the number of iterations, iα  

denotes the iteration step that can be determined by the Armijo search algorithm, tμ  is the 

iteration parameter, I is the 2 × 2 identity matrix, and J is the Jacobi matrix of the objective 
function M that takes the form 
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In Eq. (8), the difference approximations are taken for the partial derivatives. The termination 
criterion of iteration is selected in the following manner: 

 2 2( , ) ( ) ( ) , 1, 2, 3...
2j j

m
M n k jδ δ < Ψ + Δ =   (9) 

where δΨ and δΔ denote the standard deviations of the measurement errors of Ψ and Δ, 
respectively. 

The computational procedure of the inversion method can be summarized as follows: 
Step 1. Choose the initial guess (n0 , k0). This work provides two methods for producing 

the initial guess. The first method involves regarding the pseudo optical constants (np , kp) 
calculated by Eq. (2) as the initial guess. In fact, when the relative roughness of the micro-
rough surfaces is rather small and ζ is relatively large, the pseudo optical constants are quite 
close to (n*, k*). Another way for obtaining (n0 , k0) involves the use of the EMA model. 
Based on an EMA model with a thickness of σ, another initial guess can be obtained as (nE , 
kE). 

Step 2. Knowing (n0 , k0) and the incident angle, solve the direct problem and calculate 
the objective function defined by Eq. (6). Stop the iteration process, if the termination 
criterion is satisfied. Otherwise, go to Step 3. 

Step 3. Give the differential step sizes of n and k to calculate 0 0( , )J n k . 

Step 4. Determine iα  with the Armijo algorithm and compute the iteration equation given 

by Eq. (7). 
Step 5. Solve the direct problem and calculate the objective function defined by Eq. (6). 

Stop the iteration process if the termination criterion is satisfied. Otherwise, go to Step 6. 
Step 6. Set j = j + 1 and compute ( , )j jJ n k . Then go back to Step 4. 

The error of the inversion method depends on the measurement errors of the instruments, 
including the SE and surface morphology detectors. For the Gaussian distributed randomly 
micro-rough surfaces, the standard deviations (δn, δk) of the optical constants of a sample can 
be estimated from the following equations: 
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where δσ and δζ denote the standard deviations of the measurement errors of the surface 
morphology detectors in the vertical and lateral dimensions, respectively. The partial 
derivatives in Eq. (10) can be calculated using the first-principles calculations of the 
electromagnetic scattering and difference approximations. Compared with the EMA model, 
great progress is made in the fact that the error of the inversion method can be estimated from 
Eq. (10). 

3. Results and discussion 

Based on the proposed inversion method, several examples of the analysis of the SE 
parameters are presented in this section. It is impossible to provide the analysis of all types of 
samples. To make the inversion method well understood, a detailed example is shown first 
including complete procedures. Then more examples are exhibited for different 
morphologies, which are used to validate the feasibility of the proposed method. 

3.1 A detailed case 

In the case of no measurement errors of the surface morphology and the SE parameters, the 
first detailed example was performed for a silicon wafer with Gaussian distributed randomly 
micro-rough surfaces. The wavelength of light was selected as 400 nm and the incident angle 
was chosen as 60°. As aforementioned, one may use various incident angles to avoid the non-
uniqueness of inversion. For Gaussian micro-rough surfaces, however, adopting an incident 
angle is generally enough due to randomness. The assumed root mean square height is σ = 10 
nm and the correlation length is ζ = 50 nm. At first, we obtained the optical constants of Si 
from [40] and checked the grid independence of the FDTD simulation, as shown in Fig. 1. 
Based on the convergence of calculations, a mesh size of λ/400 was used for this case, which 
could reproduce the morphology of the rough surfaces well. It is worth noting that different 
mesh sizes for various morphologies was used to guarantee the grid independence of the 
simulation. 

The n - k and Ψ - Δ trajectories of the iteration are shown in Fig. 2. The true optical 
constants and the “measured” SE parameters were marked with the pentagram plotted in Fig. 
2(a) and 2(b), respectively. They served as the benchmarks for verifying the inversion 
method. The “measured” SE parameters were simulated by FDTD based on the true optical 
constants. The digits in Fig. 2 represent the positions of the optical constants and the 
corresponding SE parameters after the jth iteration. According to the procedure of the 
inversion method, the pseudo optical constants labeled with ‘S’ in Fig. 2(a) were chosen as 
the initial guess or the starting point of iteration. Figure 2(a) illustrates the fact that the pseudo 
optical constants had an obvious deviation from the true optical constants, which again 
indicated that the surface roughness had a significant effect on the SE measurement. By 
solving the direct problem, the corresponding SE parameters at the initial guess (n0 , k0) could 
be obtained from the FDTD simulation for the same rough surface. These parameters are 
shown in Fig. 2(b). Then we set the differential step sizes of n and k as 0.0001 to calculate 

0 0( , )J n k  using the difference approximations. The first iterative results labeled with ‘1’ were 

obtained by solving Eq. (7). At the time, the termination criterion Eq. (9) was not satisfied. 
Hence, the iterations were executed continuously based on Step 4 to 6 until the termination 
criterion was met. It was worth noting that although the FDTD simulations usually generated 
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the highly reliable results at the expense of long simulation time, the advantage of our 
approach was its robustness and fast convergence speed, which saved a lot of computation 
time. As shown in Fig. 2, after five iterations, the optical constants obtained from the 
inversion method were almost equal to the true values. At the time, the objective function was 
less than 5 × 10−3. For other cases, the convergence speed was similar with that in Fig. 2. All 
computations in this work were carried out on a PC with 2.7 GHz processor (Intel(R) 
Xeon(R) Platinum 8168 CPU) and 383 GB RAM. An entire inversion process took about 5 
hours. 

 

Fig. 1. Check of the grid independence of the FDTD simulation for the Gaussian distributed 
randomly micro-rough surfaces: σ = 10 nm and ζ = 50 nm. 

 

Fig. 2. (a) n - k and (b) Ψ - Δ trajectories of the iteration operated in a silicon wafer with the 
Gaussian distributed randomly micro-rough surfaces of σ = 10 nm and ζ = 50 nm (λ = 400 nm, 
θ = 60°). 

3.2. Spectroscopic results for different surface morphologies 

After describing a detailed case, this section will demonstrate the applicability of the 
proposed inversion method for different rough surfaces at various incident wavelengths. The 
results are shown in Fig. 3. The spectroscopic range was chosen from 400 nm to 1000 nm and 
the incident angle was 60°. The studied material in this section is still Si. The morphological 
parameters were σ = 10 nm and ζ = 50 nm in Figs. 3(a) and 3(b), while the parameters were σ 
= 20 nm and ζ = 40 nm in Figs. 3(c) and 3(d). The results corresponded to three analysis 
methods to obtain the optical constants from the SE parameters. The first method was 
utilizing the Fresnel equations of the smooth surfaces to obtain pseudo optical constants. The 
second and the last methods involved performing the data analysis with the EMA model and 
the proposed inversion method, respectively. It was shown that our inversion approach 
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performed with the highest precision among the above three methods. All of the inversion 
results produced by our method agreed well with the true optical constants obtained from 
[40]. 

 

Fig. 3. Optical constants of Si with the Gaussian distributed randomly micro-rough surfaces 
estimated from the SE parameters using the Fresnel equations, the EMA model, and our 
inversion method, respectively. The morphological parameters were σ = 10 nm and ζ = 50 nm 
for subfigures (a) and (b), while the parameters were σ = 20 nm and ζ = 40 nm for subfigures 
(c) and (d). The incident angle was θ = 60°. The true values of the optical constants were 
obtained from [40]. 

The error comparison of the three analysis methods used to obtain the optical constants is 
shown in Table 1. We define the relative error of complex refractive index as 

 
( ) ( )

( ) ( )

2 2

2 2
100%.

n n k k

n k
α

∗ ∗

∗ ∗

− + −
= ×

+
 (11) 

As presented in Table 1, the optical constants obtained from the Fresnel equations of the 
smooth surfaces deviated further from the true values when σ/λ increased. Compared with the 
Fresnel equations, the EMA model was capable of obtaining more reliable results. Similarly, 
the precision of the EMA model went up with the decreasing σ/λ. For the inversion method, 
those results were obtained within five iterations. All of the cases in Table 1 illustrate the 
robust convergence and the high-precision results of the inversion method for different 
morphologies and wavelengths. The main reason for this was that the electromagnetic 
interaction of light with the rough surfaces was accurately obtained from the first-principles 
calculations of Maxwell’s equations in each iterative step. 

To check the influence of the measurement errors of the SE parameters and the surface 
morphologies on the inversion method, four cases were chosen from Table 1. The standard 
deviations of the optical constants in the error transfer formula Eq. (10) are presented in Table 
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2. The coefficients in Eq. (10) could be readily solved by numerical difference calculations.
Based on the measurement errors of AFM and SE, the standard deviations could be
computed. Generally, for the visible variable angle spectroscopic ellipsometry (V-VASE), the
errors were |δΨ| = 0.03° and |δΔ| = 0.2° [41]. We assumed that the errors of AFM were less
than 0.5% of the characteristic lengths, which could be completely guaranteed by current
devices. Substituting these parameters and coefficients into Eq. (10), the standard deviations
of the optical constants caused by the instrumental errors were calculated. The results show
that the measurement errors of AFM and SE had an evident effect on the inversion method
due to the strong sensitivity of the SE measurements.

Table 1. Error comparison of the Fresnel equations, the EMA model, and the inversion 
method used to obtain the optical constants of Si in the case of no measurement errors. 

Morphologies (nm) Wavelength (nm) Fresnel equations EMA Inversion method 

σ ζ λ α α α 

10 50 400 23.47% 12.94% 0.41% 

10 50 600 13.53% 4.46% 0.37% 

10 50 800 10.36% 2.44% 0.01% 

10 50 1000 8.58% 1.85% 0.12% 

20 40 400 60.46% 25.56% 0.68% 

20 40 600 44.22% 19.63% 0.14% 

20 40 800 37.54% 16.90% 0.04% 

20 40 1000 32.30% 14.49% 0.00% 

Table 2. Standard deviations of the optical constants caused by the instrumental errors of 
AFM and SE. 

Morphologies (nm)
δn δk 

σ ζ 

10 50 

0.0076 0.0414 

0.1227 0.0544 

0.2124 0.0943 

0.1822 0.0833 

3.3. Experimental validation 

Gratings are special rough surfaces with periodic structures. Figure 4 shows the schematic of 
the 1D rectangular grating. In this section, we employ some available SE experimental data 
for gratings to verify the validation of our approach. The experimental data were retrieved 
from [29] and these data are shown in Fig. 5. In the reference literature, the chosen samples 
were rectangular-relief Si gratings patterned on a Si substrate. The incident angle was 65.45° 
in the measurement. The critical dimensions used in the present study were Λ = 134.1 nm, b = 
47.1 nm, and h = 116.7 nm. The technical details of the relative apparatus can be found in the 
literature [29]. In this work, RCWA was employed to calculate the electromagnetic response 
of the 1D rectangular grating. The numerical accuracy of RCWA was significantly influenced 
by the number of the diffraction orders. To yield accurate results using a reasonable amount 
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of time, the number of diffraction orders was determined as 501 with a convergence check. Si 
is a well-known material and the reference data for its optical constants were obtained from 
[40]. Based on the known optical constants, the accuracy of our RCWA simulation was 
checked by comparing it with the available experimental data, as illustrated in Fig. 5. 
Simultaneously, the good fitting results demonstrate the reasonability of choosing these 
reference data as the benchmark of the optical constants in the process of verifying our 
method. 

 

Fig. 4. Schematic of the 1D grating nanostructure. As found in [29], the geometric parameters 
used in the present study are Λ = 134.1 nm, b = 47.1 nm, and h = 116.7 nm. 

 

Fig. 5. Comparison of the SE parameters yielded from our RCWA simulation with 
experimental results in [29]. 

Before checking the validation of our approach, we investigated the accuracy of the EMA 
model for the optical constants inversion for gratings. In the inversion process, the film 
thickness of the EMA layer was taken as the grating height (h = 116.7 nm) and the grating 
duty cycle was 35.12%. The comparison of the inversion from the EMA model with the 
reference data is shown in Fig. 6(a). This comparison implies that the EMA model failed to 
predict the optical constants of samples with grating structures. 

Our inversion method was then checked using the same case. In fact, due to the 
periodicity of the gratings, it was possible to yield identical SE parameters at the same 
incident angle for two samples with the different optical constants and with same grating 
dimensions. To overcome this challenge, our strategy involved performing the inversion 
method in sequence from the shortest wavelength to the longest wavelength, not 
simultaneously conducting the inversion over the entire spectrum. First, we provided an initial 
guess n0 = 5 and k0 = 1 for the shortest wavelength, which was not close to but not far away 
from the reference data. Later, we could obtain the final inversion results at the shortest 
wavelength. When dealing with the second wavelength, the initial guess might be taken as the 
inversion results corresponding to the first wavelength. In a similar way, the inversion results 
for the last wavelength acted as the initial guess for the next wavelength. The advantage 
achieved with this method was the guarantee that the initial guess at the next wavelength 
could not be far away from the true values due to the continuity of the optical constants. As a 

Λb

h
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result, Fig. 6(b) shows that the results derived from our approach agreed well with the 
reference data. In the entire inversion process, we only assumed the first initial guess at the 
shortest wavelength. This was a fair way to verify the validation of our approach. The 
deviation of the inversion results from the experiment was probably due to the deviations of 
the shape of the grating lines from perfectly vertical structures. 

Fig. 6. Comparisons of the reference data of Si with the optical constants obtained from (a) the 
EMA model and (b) our inversion method. 

Furthermore, we conducted an experimental validation of our approach on a real SiO2 
rough surface. The experimental data about the rough sample were directly retrieved from our 
previous work [23]. The surface geometrical morphology was scanned by Bruker Dimension 
FastScan AFM as shown in Fig. 7. The measured morphological parameters were σ = 0.462 
μm and ζ = 2.78 μm. More experimental details could be found in the literature [23]. The 
errors AFM were less than 0.5% of the characteristic lengths. For the wavelength range from 
2 to 30 μm, the errors of the employed ellipsometer are |δΨ| = 0.1° and |δΔ| = 0.5°. We 
randomly chose three target wavelengths of 7.81, 9.97, and 12.71 μm to extract their 
corresponding optical constants via our inversion method. The initial guess (n0, k0) for the 
wavelengths of 7.81, 9.97, and 12.71 μm were also discretionarily chosen as (2, 1), (3.55, 
0.97), and (3, 1.5), respectively. As shown in Table 3, good agreement of the reference data 
with the optical constants obtained from our method validates the accuracy of our method. 
Additionally, the standard deviations of the optical constants caused by the instrumental 
errors were calculated in Table 3. The slight deviation of the optical constants obtained from 
our method from the reference data might mainly arise from the impurities of the sample and 
the statistical errors of the Gaussian distribution. 

Fig. 7. Morphology of the SiO2 rough surface scanned by AFM, which was obtained from the 
literature [23]. The statistically morphological parameters were σ = 0.462 μm and ζ = 2.78 μm. 
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Table 3. Comparison of the reference data of SiO2 with the optical constants obtained 
from our inversion method. Here δn and δk are standard deviations of the optical 

constants caused by the instrumental errors of AFM and SE. 

Wavelength 
(μm) 

Reference data [40] Our inversion method 
Relative 

error 

λ n k n (δn) k (δk) α 

7.81  0.6292 0.0744  0.6468(0.0049) 0.0791(0.0075) 2.88% 

9.97  2.7080 0.5648  2.5058(0.0419) 0.5510(0.0400) 7.33% 

12.71  1.7956 0.3021  1.7603(0.0162) 0.2984(0.0149) 1.95% 

4. Conclusions

The EMA model cannot build accurate mappings between the optical constants and the SE 
parameters for micro-rough surfaces since it neglects the large effect of the correlation length 
on the electromagnetic scattering from rough surfaces. This may cause the large deviation of 
optical constants in the data analysis of SE. Additionally, the precision of the EMA model is 
difficult to evaluate quantitatively. In this paper, based on the first-principles calculations of 
Maxwell’s equations and the Levenberg-Marquardt optimization algorithm, a novel inversion 
method is proposed to obtain optical constants of solid materials with randomly micro-rough 
surfaces. First, the samples with different Gaussian distributed randomly micro-rough 
surfaces were employed to theoretically verify the accuracy of the inversion method. All of 
the results suggest that the method had a robust convergence and a higher precision than the 
EMA model. The error of the inversion method was estimated by the measurement errors of 
SE and surface morphology detectors (such as AFM), which had a superior advantage to the 
EMA model. In addition to the numerical verification, the experimental validation of our 
method was also conducted with the available SE experimental data of rectangular gratings 
and a real SiO2 randomly rough surface. Overall, the EMA model was always a tool that 
people relied on to perform the data analysis of SE for rough surfaces, but this work provides 
another method with wider applicability and higher precision. 
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